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Cytosol trafficking is a limiting step of viral infection or DNA delivery. Starting from
the cell surface, most viruses have to travel through a crowded and risky environment in
order to reach a small nuclear pore. This work is dedicated to estimating the probability
pN of a viral arrival success and, in that case, the mean time τN it takes. Viral movement
is described by a stochastic equation, containing both a drift and a Brownian compo-
nent. The drift part represents the movement along microtubules, while the Brownian
component corresponds to the free diffusion. The success of a viral infection is limited
by a killing activity occurring inside the cytoplasm. We model the killing activity by a
steady state killing rate k. Because nuclear pores occupy a small fraction of the nuclear
area, we use this property to obtain asymptotic estimates of pN and τN as a function of
the diffusion constant D, the amplitude of the drift B and the killing rate k.

KEY WORDS: mean first passage time, modeling DNA and virus trafficking, asymp-
totic analysis, stochastic process, small hole

1. INTRODUCTION

Intracellular trafficking of genome is a key step in viral and non-viral mediated
gene transfer. (4,24) After entering into the cell, by endocytosis for example, a viral
DNA (or a plasmid DNA) has to escape from endosomes and travel through a highly
crowded media before reaching the nucleus. (7) In this study, we are interested for
both, viruses and plasmids, in computing the efficiency of the delivery process.
We propose to obtain asymptotic computations of the probability pN they reach
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one of the nuclear pore (which occupy only a small fraction of the nucleus surface)
and the mean time τ N it takes. We limit this study to the steps involved in cytosol
trafficking i.e. the motion starting after endosome release and ending at the level
of the nuclear pore.

I will make the distinction between naked DNA (plasmid DNA) and viral
DNA (spherical particle) motion. DNA movement inside a cell depends on its
shape and on its size. For small DNAs (<250 base pairs), mobility can be described
as a pure Brownian motion, (1) while larger DNAs (>250 base pairs) movement has
been described by a different theory. (2) The density of actin filaments and micro-
tubules highly restrict the DNA diffusion, as demonstrated experimentally. (1) In
contrast, viruses movement can be seen as a succession of jumps between a pure
Brownian behavior and a deterministic transport along microtubules. (5) Active
transport of a virus generally involves motor proteins such as Kinesin (to travel in
the direction of the cell membrane) or Dynein (to travel toward the nucleus). (22)

Once a virus is attached to a Dynein protein, its movement can be modeled as a
determinist drift toward the nucleus. In the crowded cell environment, due to DNA
trapping into the actin meshwork, modeling a naked DNA fragment (>250 bp) as a
material point is somehow simplistic. However, we will see that interesting results
can still be obtained under this assumption. We will consider that a permanent
immobile DNA, trapped in the network, or a DNA degraded by cytosolic
nucleases (12) are killed. In our computations, this killing process will be modeled
as a space dependent killing rate k(x ). For viruses, in the notion of killing rate,
I include various phenomena such as cytoplasmic irreversible immobilization,
outward movement of viral particle and/or proteasome degradation. Thus, the
probability to reach the nucleus depends on all these degradation processes.

In the first part of the paper, to account for the geometrical features of the
cell, we present the Fokker–Planck equation satisfied by the survival probability
density function pt (x ) to find a particle (either a virus or naked DNA) alive
inside a volume element x + dx at time t. We obtain various expressions for the
probability pN that a particle reaches a small pore and for the conditioned Mean
First Passage Time (MFPT) τ N . These quantities are related to some solutions of
elliptic partial differential equations (PDEs), derived from the probability pt (x ).
In the second part of the paper, we present an asymptotic analysis of these PDEs,
under the following assumptions: 1) the area occupied by the nuclear pores is
small compared to the size of the nucleus and the cell and 2) the killing rate
is small compared to the diffusion scale. Under these assumptions, we obtain
explicit asymptotic expressions of pN and τ N as a function of the drift amplitude,
the killing rate k, the diffusion constant D and the total number and size of nuclear
pores. The estimates are obtained when the cell geometry is well approximated
as a limit domain in dimension two and when it is a regular domain in dimension
three. To test the asymptotic formula against biological datas, we present some
numerical results for the cases of plasmid DNA (zero drift case) and for the case
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of a virus, which accounts also for a drift. Finally, we shall discuss the biological
implications of these asymptotic formulas.

2. MODELING THE TRAJECTORY OF A GENERIC PARTICLE

IN THE CYTOPLASM

The cytoplasm of biological cells defines a geometrical domain which
contains a nucleus N , occupying a small portion of the cell volume. We denote
by � the volume occupied by the cytoplasm. We approximate N as a ball of
radius δ, with δ � |�|1/3. We assume that the geometry of the domain � is such
that the isoperimetric ratio is |∂�|

|�|2/3 = O(1) and that there is no bottle neck of size
comparable to the size of the small pore located on the nucleus. This assumption
is satisfied in most of the cell, except for example neurons.

We model a naked DNA or a virus as a material point and thus neglect
the effect of its finite size. As a consequence possible trapping of the DNA by
actin filaments or microtubules is neglected. In this paper, we approximate the
intermittent dynamics between free diffusion and drift motion along microtubule
by an effective movement which accounts for both components at the same time.
In that case, the effective drift represents the statistical mean drift and its amplitude
is denoted by a constant B, it is radial and attractive. The effective drift depends
on the events of attaching and detaching to the microtubule filaments and many
other parameters such as the density of microtubules, the binding and unbinding
rate (see Ref. 11 unpublished data) for further analysis. Thus, if we denote by X (t)
the position of a virus at time t , then it satisfies the standard stochastic equation

d X

dt
= b(X ) +

√
2Dẇ (1)

where D is the diffusion constant and the drift b is given by

b(x ) = −B
r

|r| , (2)

where r is the radial vector x , the origin of which is taken inside the nucleus.
A schematic viral trajectory and its mathematical idealization inside a cell are
represented in Fig. 1.

2.1. Steady State Equations

We will first recall the expressions for the probability pN and the mean time
τ N . We denote the external boundary of the cell by ∂�ext while the boundary
of the nucleus is divided into an absorbing part ∂ Na and a reflecting part ∂ Nr .
∂ Na is the union of well separated small pores. The total boundary is ∂� =
∂�ext ∪ ∂ Na ∪ ∂ Nr .
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Fig. 1. Virus trafficking inside the cytoplasm of a biological cell. On the left figure, microtubules are
represented originating from the cell surface and ending to the nucleus. The small nuclear pores are
represented by black dots distributed uniformly on the nucleus surface. A viral trajectory is represented
by an intermittent movement: bound to microtubules and thus moving with a constant drift in direction
of the nucleus or moving by Brownian motion inside the cell cytoplasm. On the right figure, the virus
movement has been approximated by a standard stochastic equation with a constant radial drift.

Let us consider the probability PN (x ) that a DNA particle reaches the nucleus
alive and conditioned on the initial position x . The cell geometry is modeled as a
domain � and the nucleus is approximated by a small ball B(a) of radius a. We
assume that all trajectories of the vector field b originating from the cell boundary
∂�ext reach the boundary of B(a) in a finite time (no recurrent sets of b are
contained in � − B(a)).

The survival probability density function (SPDF) is given by

p(x , t | y)dx = Pr{X (t) ∈ x + dx , τ k > t, τ a > t |X (0) = y}, (3)

where τ a is the first time that the virus reaches the absorbing boundary ∂ Na alive
and τ k is the first time that it is hydrolyzed. The SPDF p(x , t | y) satisfies the
forward Fokker–Planck equation(16)

∂p

∂t
(x , 0| y) = D�p(x , 0| y) − ∇(p(x , 0| y)b(x )) − k(x )p(x , 0| y) in � (4)

with the initial condition

p(x , 0| y) = δ(x − y) for x , y ∈ � (5)

and the boundary conditions

p(x , t | y) = 0 on ∂ Na (6)

J(x , t | y).nx = 0 on ∂ Nr ∪ ∂�ext, (7)
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nx denotes the normal derivative at a boundary point x . The flux density vector
J(x , t | y) is defined as

J i (x , t | y) = −D∇ i p(x , t | y) + bi (x )p(x , t | y). (8)

To express the probability PN ( y) that a virus arrives to the nucleus N before being
killed, conditioned on the initial location y, we follow the result of Ref. 9 and we
get

PN ( y) = Pr{τ a < τ k |X (0) = y}. (9)

Similarly, the probability of being killed before arriving at the absorbing part
of the nucleus is defined as Pr{τ k < τ a|X (0) = y}. These probabilities can be
expressed in terms of SPDF by integrating the Fokker–Planck eq. (4) from 0 to
infinity first and then over the domain �. (9) We get

1 =
∫ ∞

0

∮
∂�

J(x , t | y) · n(x ) d Sx dt +
∫ ∞

0

∫
�

k(x )p(x , t | y) dx dt. (10)

Thus identifying the probabilities, we obtain that

PN ( y) = Pr{τ a < τ k |X (0) = y} =
∫ ∞

0

∮
∂�

J(x , t | y) · n(x ) d Sx dt (11)

and

Pr{τ k < τ a|X (0) = y} =
∫ ∞

0

∫
�

k(x )p(x , t | y) dx dt. (12)

=
∫

�

k(x ) p̃(x | y) dx ,

where

p̃(x | y) =
∫ ∞

0
p(x , t | y) dt (13)

is solution of

D� p̃ − ∇(b(x ) p̃) − k(x ) p̃ = −δ(x − y) for x , y ∈ � (14)

and the boundary conditions are given by (6). When the initial distribution is given
by a smooth function pi , we can define the averaging probability

p̃(x ) =
∫

�

p̃(x | y)pi ( y)d y, (15)

solution of the equation

D� p̃(x ) − ∇(b(x ) p̃(x )) − k(x ) p̃(x ) = −pi (x ) for x ∈ �. (16)
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We define the time dependent averaged probability by

p̃(x , t) =
∫

�

p̃(x , t | y)pi ( y)d y. (17)

and the associated flux

J i (x , t | pi ) = −D∇ i p̃(x , t) + bi (x ) p̃(x , t). (18)

Finally, we define the probability pN to reach the nucleus as the reaching proba-
bility averaged over the initial position, by the formula

PN =
∫

�

Pr{τ a < τ k |X (0) = y}pi ( y)d y

= 1 −
∫

�

k(x ) p̃(x ) dx . (19)

For technical reasons, it is more convenient to work with a smooth function pi

rather than the Dirac distribution, which leads to a singularity of the function of
p̃(x | y).

We will now define two mean times, averaged over the initial distribution:
first the mean time τK a virus or a particle DNA is killed before reaching the
nucleus. It is the mean first passage time to be killed conditioned on the event that
the virus or the DNA is killed before reaching the absorbing boundary condition.
Second, the mean time τN a virus or a naked DNA reaches the nucleus is defined
as the mean first passage time to the absorbing boundary, conditioned on the event
that they are not killed somewhere inside the domain �. We derive in the next
paragraph some analytical expressions for both τN and τK .

2.2. Mean Time to Reach the Nucleus τN

The mean time τN a DNA particle reaches the nucleus is by definition the
MFPT (Mean First Passage Time) conditioned on success, that is, the virus or the
DNA must arrive alive at a nucleus pore. We derive now a set of partial differential
equations (see also Ref. 9) satisfied by the MFPT. The probability distribution
function (pdf) of the time τ k that a viral trajectory is killed before reaching an
absorbing pore ∂ Na is found by integrating the Fokker–Planck eq. (4) first with
respect to x over the cell domain �, and second with respect to s from 0 to t .

We first derive an equation for pdf of the killing time Pr{τ k < t | τ a > τ k, pi }
conditioned first on the event that the virus will be killed before it escapes and
second on the initial distribution of the virus. Starting with Bayes law and using
eq. (19), we have that

Pr{τ k < t | τ a > τ k, pi } = Pr{τ k < t, τ a > τ k | pi }
Pr{τ a > τ k | pi } (20)
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where

Pr{τ a > τ k | pi } =
∫ ∞

0

∫
�

∫
�

k(x )p(x , s | y)pi ( y) dx dsd y

=
∫

�

k(x ) p̃(x ) dx

and

Pr{τ k < t, τ a > τ k | pi } =
∫ t

0

∫
�

∫
�

k(x )p(x , s | y) dxd y ds

=
∫ t

0

∫
�

k(x ) p̃(x , s) dx ds.

Thus expression (20) for the probability density function of the killing time is
given by

Pr{τ k < t | τ a > τ k, pi } =
∫ t

0

∫
�

k(x ) p̃(x , s) dx ds∫
�

k(x ) p̃(x ) dx
. (21)

Hence after integrating by parts, the MFPT is given by

τK = E[τ k | τ k < τ a, pi ] =
∫ ∞

0
t

d

dt
Pr{τ k < t | τ a > τ k, pi }dt (22)

=
∫ ∞

0

∫ ∞
t

∫
�

k(x ) p̃(x , s) dx ds dt∫
�

k(x ) p̃(x ) dx

=
∫ ∞

0 s
∫
�

k(x ) p̃(x , s) dx ds∫
�

k(x )p(x ) dx
. (23)

To obtain an analytic expression for (22), we derive a partial differential equation
satisfied by the function q defined by

q(x ) =
∫ ∞

0
s p̃(x , s)ds. (24)

Indeed, integrating the Fokker–Planck eq. (4) after multiplying by t , we get∫ ∞

0
t
∂p(x , t | y)

∂t
dt = D�q(x | y)−∇(q(x | y)b(x ))−k(x )q(x | y) for x ∈ �.

Thus the function q satisfies the following boundary value problem⎧⎪⎨
⎪⎩

− p̃(x | y) = D�q(x | y) − ∇(b(x )q(x | y)) − k(x | y)q(x | y) for x ∈ �

q(x | y) = 0 for x ∈ ∂ Na

J(x | y).n = −D∇q(x ).n + (b(x ).n)q(x ) = 0 for x ∈ ∂ Nr ∪ ∂�ext.
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Integrating with respect to the initial distribution pi and using that p̃ is solution
of eq. (16), we obtain that⎧⎪⎨
⎪⎩

− p̃(x ) = D�q(x ) − ∇(b(x )q(x )) − k(x )q(x ) for x ∈ �

q(x ) = 0 for x ∈ ∂ Na

J(x | y).n = −D∇q(x ).n + (b(x ).n)q(x ) = 0 for x ∈ ∂ Nr ∪ ∂�ext.

(25)

Thus, the conditional MFPT to be killed can be expressed as follow:

E[τ k | τ k < τ a, pi ] =
∫
�

k(x )q(x ) dx∫
�

k(x ) p̃(x ) dx
. (26)

Similarly, by using the pdf of the absorbing time τ a to the absorbing boundary ∂ Na ,
for survival trajectories, we obtain an expression for the conditioned MFPT τ a :

Pr{τ a < t | τ a < τ k, pi } =
∫ t

0 J (s | pi ) ds

1 − ∫ ∞
0

∫
�

k(x ) p̃(x , s) dx ds
, (27)

where the flux is by definition

J (s | pi ) =
∮

∂�

J(x , t | pi ) · n(x ) d Sx . (28)

Thus the mean time τ a to absorption is given by

τN = E[τ a | τ a < τ k, pi ] =
∫ ∞

0
(1 − Pr{τ a < t | τ a < τ k, y}) dt

=
∫ ∞

0 s J (s | pi ) ds

1 − ∫
�

k(x ) p̃(x ) dx
=

∫
�

p̃(x )dx − ∫
�

k(x )q(x )dx

1 − ∫
�

k(x ) p̃(x ) dx
, (29)

where the last identity is obtained by integrating Eq. 25 over the domain �.

3. EXPRESSION OF THE PROBABILITY AND THE MFPT A NAKED

DNA REACHES A SMALL NUCLEAR PORE

Naked DNA are well described by pure Brownian diffusion. Thus to estimate
pN and τN , we set the vector field b to zero. The case b �= 0 will be treated in sec. 4.

3.1. Probability to Reach the Nucleus Alive with a Zero Drift

In this section, we shall compute the probability PN ( y) that a virus reaches
one of the nuclear pore alive, conditioned on the initial position y. We consider
both dimensions n = 2 and n = 3. The difficulty of the present computation arises
from the fact that a virus must arrive to only a small fraction of the nucleus surface.
Thus the boundary conditions imposed on the nucleus are reflective except for a
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small opening ∂ Na = Bη, which consists of a small ball of radius η � 1 (further
on, we include the case of many small openings). Equation (16) for the probability
becomes

D� p̃ − k(x ) p̃ = −pi (x ) for x , y ∈ � (30)

p̃(x ) = 0 for x ∈ ∂ Na (31)

∂ p̃

∂n
(x ) = 0 for x ∈ ∂ Nr ∪ ∂�ext. (32)

Similarly to the method proposed in Ref. 10, to determine asymptotically the
solution of (30), we shall use the Green function G Q(x ), solution of

D�G Q(x ) = −δQ(x ), x ∈ �, (33)

D
∂G Q

∂n
(x ) = −1

|∂�| , for x ∈ ∂�, (34)

where δQ is the Dirac function centered at point Q. G Q is defined up to an additive
constant that will be specified later on. We have, (6)

D G Q(x ) =
{− 1

2π
ln |x − Q| + wQ, for n = 2

1
4π

|x − Q|−1 + wQ, for n = 3,
(35)

where wQ is a regular harmonic function. We recall that on the regular boundary
∂ Na , due to the image source, the singularity of the Green function is multiplied
by a factor 2 (see Ref. 10 for further details).

3.2. Probability to Reach the Nucleus for a Small Killing Rate (k � 1)

To estimate pN asymptotically, we use the method developed in Ref. 10
which consists first in deriving an integral equation by using the Green identity
and then, to use the Dirichlet condition at the small absorbing boundary. As the
size of the absorbing boundary goes to zero, we approximate asymptotically the
leading order term of the conditional probability by a constant. The asymptotic
expression is obtained by using a Taylor expansion of the probability as a function
of the absorbing boundary size.

An integral representation of p̃ is obtained by using eq. (30) and (33) in
Green’s formula. We get from∫

�

(
G Q� p̃ − p̃�G Q

)
(x )dx =

∫
∂�

(
G Q

∂ p̃

∂n
− p̃

∂G Q

∂n

)
(x (S))d S. (36)

that∫
�

G Q(x ) (−pi (x )+k(x ) p̃(x )) dx+ p̃(Q) = D

∫
∂ Na

G Q
∂ p̃

∂n
d S+ 1

|∂�|
∫

∂�

p̃d S.
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We assume that the absorbing boundary is a small ball Bη (in dimension 3) or a
small arclength (in dimension 2) ∂ Na = Bη, where η � 1. Under this assumption
the leading order term p̃(x ) outside a boundary layer located near the absorbing
boundary can be approximated by a constant (see Ref. 18), p̃(x ) ≈ Pη when the
killing rate k is much smaller, less than the effect of diffusion. Thus, we get

p̃(Q) = D

∫
∂ Na

G Q
∂ p̃

∂n
d S + Pη

(
1 −

∫
�

k(x )G Q(x )dx

)

+
∫

�

G Q( y)pi ( y)d y. (37)

In order to estimate the constant Pη (as a function of x ), we use that at the absorbing
boundary ∂ Na , the function p̃ has to vanish. If we denote the unknown flux by

g(S) = ∂ p̃

∂n
(x (S)), (38)

and take a point Q ∈ ∂ Na where p̃(Q) = 0, then we obtain the relation

0 = D

∫
∂ Na

G Q(x (S))g(S)d S + Pη

(
1 −

∫
�

k(x )G Q(x )dx

)

+
∫

�

G Q( y)pi ( y)d y. (39)

To compute g(s), we integrate (30) over the domain �, using that∫
�

pi (x )dx = 1,

D

∫
∂ Na

g(S)d S = −1 +
∫

�

k(x ) p̃(x )dx

= −1 + Pη

∫
�

k(x )dx . (40)

To estimate the left-hand side of expression 40, we use a Taylor expansion of the
flux g(S) at a fixed point in the interior of the absorbing boundary far from the
edges (see Ref. 10), we get

∫
∂ Na

g(S)d S =
∫ η

−η

g(S)d S = 2ηg0 + o(η), (41)

where g0 is the first term of the expansion of g(S). Thus, we obtain from relation
(40) that

g0 = −1 + Pη

∫
�

k(x )dx

2Dη
. (42)
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To estimate the constant Pη, we use the expansion of the Green function in
dimension 2 and 3 in expression (39),

DG Q(x ) =
{− 1

2π
ln |x − Q| + C0 + hQ, for n = 2

1
4π

|x − Q|−1 + C0 + hQ, for n = 3,
(43)

where C0 is a constant and hQ a harmonic function, then in dimension 2, we get
(for the details of the computations see Ref. 10)

0 = D

∫
∂ Na

G Q(x (S))g(S)d S+Pη

(
1−

∫
�

k(x )G Q(x )dx

)
+

∫
�

G Q( y)pi ( y)d y

≈ − 1

π

∫ η

−η

ln |s|g0d S + 2(C0 − 1)g0η + Pη

(
1 −

∫
�

k(x )G Q(x )dx

)

+
∫

�

G Q( y)pi ( y)d y

≈ 2g0η

(
− ln η

π
+ (C0−1)

)
+Pη

(
1−

∫
�

k(x )G Q(x )dx

)
+

∫
�

G Q( y)pi ( y)d y

≈ 1

D

(
−1+Pη

∫
�

k(x )dx

) (
− ln η

π
+(C0−1)

)
+Pη

(
1−

∫
�

k(x )G Q(x )dx

)

+
∫

�

G Q( y)pi ( y)d y.

It is easy to check that this identity does not depend on the Green function. Finally,
far enough from the boundary layer near the window ∂�a , the solution p̃(x ) is
approximated by,

p̃(x ) ≈ Pη ≈
ln 1

η

Dπ
+ C0 − 1 − ∫

�
G Q( y)pi ( y)d y

ln 1
η

Dπ

∫
�

k(x )dx + (C0 − 1)
∫
�

k(x )dx + (
1 − ∫

�
k(x )G Q(x )dx

)
(44)

Thus using formula (12), we obtain an expression for the probability PN given by

PN = 1 −
∫

�

k(x ) p̃(x )dx

≈ 1 + ∫
�

k(x )dx
∫
�

G Q( y)pi ( y)d y − ∫
�

k(x )G Q(x )dx
ln 1

η

Dπ

∫
�

k(x )dx + (C0 − 1)
∫
�

k(x )dx + (
1 − ∫

�
k(x )G Q(x )dx

) .

In the limit of k � 1, whatever is the choice of C0, which can be used to fix the
Green function, we can neglect terms containing k (which are all bounded), except
the term in the denominator which is multiplied by a large flux. The leading order
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term for the probability PN in dimension 2 is given by

PN ≈ 1

1 + ln 1
η

Dπ

∫
�

k(x )dx
for k(x ) � 1,

where we recall that in dimension two, η represents the ratio of absorbing to the
total nucleus surface. In dimension 3, computations are similar. Let us outline the
main differences. The flux through ∂ Na , which is a small disk of radius η, is given
by Ref. 18

∂ p̃

∂n
(x (S)) = g(s) = g0√

η2 − s2
+ o(η) (45)

The leading order term of g(s) is computed by integrating eq. (30)

D

∫
∂ Na

g(S)d S = −1 + Pη

∫
�

k(x )dx (46)

and by a direct computation, we obtain∫
∂ Na

g(S)d S =
∫ η

0

g0√
η2 − s2

2πsd S = 2πηg0 (47)

leading to the estimate:

g0 = −1 + Pη

∫
�

k(x )dx

2π Dη
. (48)

As in dimension 2, replacing the leading order term in relation (39) by a constant
and using the Green function expansion (of G Q) in dimension 3, we get

D

∫
∂ Na

G Q(x(S))g(S)d S =
∫ η

0

(
1

2π
|s|−1 + C0

)
g0√

η2 − s2
2πsds (49)

Thus Eq. (39) becomes

0 = 1

2π

∫ η

0
|s|−1 g0√

η2 − s2
2πsds + 2πηC0g0 + Pη

(
1 −

∫
�

k(x )G Q(x )dx

)

+
∫

�

G Q( y)pi ( y)d y

= g0

(π

2
+ 2πηC0

)
+ Pη

(
1 −

∫
�

k(x )G Q(x )dx

)
+

∫
�

G Q( y)pi ( y)d y

=
(

−1 + Pη

∫
�

k(x )dx

) (
1

4Dη
+ C0

)
+ Pη

(
1 −

∫
�

k(x )G Q(x )dx

)

+
∫

�

G Q( y)pi ( y)d y.
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Thus

Pη ≈
1

4Dη
+ C0 − ∫

�
G Q( y)pi ( y)d y

1
4Dη

∫
�

k(x )dx + C0
∫
�

k(x )dx + (
1 − ∫

�
k(x )G Q(x )dx

) . (50)

Finally, using the small k approximation,

PN = 1 −
∫

�

k(x ) p̃(x )dx ≈ 1

1 + 1
4Dη

∫
�

k(x )dx
for k(x ) � 1. (51)

Remark. In dimension 2, η represents the ratio of the absorbing part to the
reflective part of the nucleus.

3.3. Conditional Mean Time to Reach the Nucleus

In this section, we shall compute the average time τN a nacked DNA reaches a
nuclear pore alive. The computations go along the same lines as the ones developed
in the previous section, but their require to study a system of coupled partial
differential equations.

We start by estimating the solution q of eq. (25). Outside the boundary layer
of the small hole, p̃ has been approximated by Pη, thus

⎧⎪⎪⎨
⎪⎪⎩

−Pη = D�q(x ) − k(x )q(x ) in �

q(x ) = 0 on ∂ Na

∂

∂n
q(x ) = 0 on ∂ Nr ∪ ∂�ext.

(52)

The analysis of eq. (52) follows the steps of the previous paragraph, where q
replaces pi in eq. 30. Outside a boundary layer of the small absorbing window,
the solution q can be approximated by a constant, q(x ) ≈ Tµ, thus the Green
representation gives

q(Q)=Tη

(
1−

∫
�

G Q(x )k(x )dx

)
+

∫
�

PηG Q(x )dx+D

∫
∂ Na

G Q
∂q

∂n
d S. .(53)

The value Tη is obtained first by estimating the flux g(S) = ∂q
∂n (x (S)) and second

by using the absorbing boundary condition at ∂�a . Integrating the first equation
in (52), we get

D

∫
∂ Na

g(S)d S = −Pη|�| +
∫

�

k(x )q(x )dx ≈ −Pη|�| + Tη

∫
�

k(x )dx . .(54)

For Q ∈ ∂ Na , the boundary condition (53) gives that

0=Tη

(
1−

∫
�

G Q(x )k(x )dx

)
+

∫
�

PηG Q(x )dx+D

∫
∂ Na

G Q(x (S))g(S)d S. .(55)
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The flux g is computed by using eq. (54) and the leading expansion

g(s) =

⎧⎪⎨
⎪⎩

g0 + o(s) for n = 2,

g0√
η2 − s2

+ o(η) for n = 3
(56)

we get

∫
∂ Na

g(S)d S =
∫ η

−η

g(S)d S =
{

2ηg0, for n = 2

2πηg0, for n = 3
(57)

Thus,

g0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−Pη|�| + Tη

∫
�

k(x )dx

2Dη
for n = 2

−Pη|�| + Tη

∫
�

k(x )dx

2π Dη
for n = 3

(58)

Injecting the leading order term of the flux in eq. (55), we get

0 =

⎧⎪⎪⎨
⎪⎪⎩

Tη

(
1 − ∫

�
G Q(x )k(x )dx

) + Pη

∫
�

G Q(x )dx + 2ηg0

×(− ln η

π
+ C0 − 1

)
, for n = 2

Tη

(
1 − ∫

�
G Q(x )k(x )dx

) + Pη

∫
�

G Q(x )dx + πg0

(
1
2 + 2ηC0

)
for n = 3

(59)

Finally,

Tη =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pη

|�|
D

(
ln( 1

η )
π

+C0−1

)
−∫

�
G Q (x )dx

1
D

(
ln( 1

η )
π

+C0−1

)∫
�

k(x )dx+1−∫
�

G Q (x )k(x )dx

.

Pη
|�|( 1

4Dπ
+C0)−

∫
�

G Q (x )dx
1
D ( 1

4π
+C0)

∫
�

k(x )dx+1−∫
�

G Q (x )k(x )dx
.

(60)

Using the expression (29) for the reaching time and the expression of the proba-
bility PN , we get

τN ≈ Pη|�| − Tη

∫
�

k(x )dx

1 − Pη

∫
�

k(x )dx
≈ Pη|�| − Tη

∫
�

k(x )dx

PN
. (61)

That is, using expressions (60) and under the assumptions that
∫

�

k(x )dx ,

∫
�

GQ(x )k(x )dx � 1,
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we finally obtain the leading order term of the reaching time

τN ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|�|
(

ln( 1
η )

Dπ

)
−|�| ∫

�
G Q (x )pi (x )dx

1+
(

ln( 1
η )

Dπ

)∫
�

k(x )dx

for n = 2 for C0 = 1

|�|
(

1
4Dη

)
−|�| ∫

�
G Q (x )pi (x )dx

1+
( ∫

� k(x )dx
4Dη

) for n = 3 for C0 = 0.

(62)

3.3.1. Many Small Holes

If we take into account n well separated small holes, located on the surface of
the nucleus, the previous formulas are modified by summing over the contribution
of each flux separately , thus we get

PN =

⎧⎪⎨
⎪⎩

1

1+ ln 1
η

nDπ

∫
�

k(x )dx
for n = 2.

1
1+ 1

4nDη

∫
�

k(x )dx
for n = 3.

(63)

Neglecting the first order terms in expressions 62, we obtain the following asymp-
totic expansion for the mean reaching time,

τN ≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
|�| ln( 1

η )

nDπ

)

1+
(

ln( 1
η )

nDπ

)∫
�

k(x )dx
for n = 2

(
|�|

4Dηn

)

1+
( ∫

� k(x )dx
4nDη

) for n = 3.

(64)

To test our model, we propose to estimate the probability and the mean time
a plasmid needs to reach a small nuclear pore. The typical diffusion coefficient
for a cytosolic plasmid DNA of 5500 base pairs (average size of a gene) is
about D ≈ 0.02µm2/s. We consider a spherical cell of radius R = 5µm, having
10 percent of its nucleus surface occupied by nuclear pores. (13) This gives a
number of nuclear pores of n = 160 in dimension three and n = 25 in dimension
two. The lifespan of the cytoplasmic DNA is about one hour (12) and we choose
k = 1/3600 s−1. Using formula (63), we get for the delivery probability

PN ≈ 0.9371, for n = 2 (65)

PN ≈ 0.6875, for n = 3 (66)

while the conditional time to arrive alive is given by formula (64) and it is given by

τN ≈ 226s for n = 2 (67)

τN ≈ 1125s for n = 3. (68)
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The computations made in dimension two apply for a flat cell, while the dimension
three computation is relevant for round cells. The difference in the numerical
results for the reaching probability can be explained by noting that in dimension
3, the space visited by a Brownian molecule before reaching a nuclear pore is
much more than in dimension two, thus the probability to be killed is increased.

4. THE CASE OF A NON-ZERO DRIFT

In this section, we study the effect of a drift in the computation of the
probability PN and the mean reaching time τN . For simplicity, we treat the case
of a gradient drift, given by b = −∇φ, for which the origin of coordinates, taken
inside the nucleus, is an attractor point. At the cell external surface, we assume that
the drift is directed inside so that all trajectories are entering, which translates into
the condition (b(x ).n) < 0 for all x ∈ ∂�ext. As mentioned in the introduction,
the potential of the field is given by

φ(x ) = Br for x ∈ �, (69)

where the radial distance is r = |x |. The following computations extend some
earlier developments. (21)

4.1. Probability to Reach the Nucleus

To estimate the probability PN , we now estimate asymptotically the solution
p̃ of eq. (16). Outside the boundary layer near the absorbing boundary ∂�a , we
choose the ansatz

p̃(x ) = Cηe− φ(x )
D . (70)

To obtain an estimate of the constant Cη, we follow the steps presented in the pre-
vious section. First, integrating (16) and using the zero flux boundary conditions,
we get

D

∫
∂ Na

g(S)d S = −1 +
∫

�

k(x ) p̃(x )dx , (71)

where the flux is given by g(S) = ∂ p̃
∂n (S). Equation (71) can be approximated as

follows: for s in ∂�a ,

g(s) =

⎧⎪⎪⎨
⎪⎪⎩

g0e− φ(x0)
D + o(s) for n = 2,

g0e− φ(x0)
D√

η2 − s2
+ o(η) for n = 3,

(72)

where φ(x 0) is a value of φ in ∂�a (we assume indeed that φ is a regular not
oscillating function and as η goes to zero, φ(x(s)) converges uniformly to φ(x 0)
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for all s in the interval [−η, η]). Thus,

g0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e
φ(x0)

D

(
−1+Cη

∫
�

k(x )e− φ(x )
D dx

2Dη

)
for n = 2

e
φ(x0)

D

(
−1+Cη

∫
�

k(x )e− φ(x )
D dx

2π Dη

)
for n = 3.

(73)

Using the Green’s representation of the function p̃, we obtain

∫
�

G Q(x ) (−pi (x ) + k(x ) p̃(x )) dx +
∫

�

G Q(x )∇(∇φ(x ) p̃(x )) + p̃(Q)

= D

∫
∂�

G Q
∂ p̃

∂n
d S + 1

|∂�|
∫

∂�

p̃d S.

Integrating by parts the gradient term, we get

∫
�

G Q(x ) (−pi (x ) + k(x ) p̃(x )) dx −
∫

�

∇G Q(x ).∇φ(x ) p̃(x ) + p̃(Q)

= D

∫
∂�a

G Q
∂ p̃

∂n
d S + 1

|∂�|
∫

∂�

p̃d S. (74)

Using the absorbing boundary condition p̃(Q) = 0 for Q ∈ ∂�a and the ansatz
(70), we finally obtain the relation

D

∫
∂�a

G Q g(S)d S + 1

|∂�|
∫

∂�

Cηe− φ(x )
D d S

=
∫

�

G Q(x )
(
−pi (x ) + k(x )Cηe− φ(x )

D

)
dx

−
∫

�

∇G Q(x ).∇φ(x )Cηe− φ(x )
D dx (75)

The first term in the left-hand side is computed by using the flux condition (73).
We get (as in the previous section)

D

∫
∂�a

G Q g(S)d S =

⎧⎪⎨
⎪⎩

2Dηg0e− φ(x0)
D

(
− ln η

π
+ C0 − 1

)
for n = 2

π De− φ(x0)
D g0

(
1
2 + 2ηC0

)
for n = 3.

(76)
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Choosing C0 = 1 in dimension 2 and C0 = 0 in dimension 3, we get from relation
(75),

Cη ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln 1
η

Dπ
−∫

�
G Q ( y)pi ( y)d y

ln 1
η

Dπ

∫
�

e− φ(x )
D k(x )dx+ 1

|∂�|
∫
∂�

e− φ(x )
D d S−∫

�
e− φ(x )

D k(x )G Q (x )dx
for n =2

1
4Dη

−∫
�

G Q ( y)pi ( y)d y
1

4Dη

∫
�

e− φ(x )
D k(x )dx+ 1

|∂�|
∫
∂�

e− φ(x )
D d S−∫

�
e− φ(x )

D k(x )G Q (x )dx
for n =3.

Under the assumption that the integrals in k are small compared to 1, we get that

PN = 1 −
∫

�

k(x ) p̃(x )dx = 1 − Cη

∫
�

k(x )e− φ(x )
D dx , (77)

thus using the expression of Cη, we obtain the expression of the probability to
reach the nucleus:

PN ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
|∂�|

∫
∂�

e− φ(x )
D d S

ln 1
η

Dπ

∫
�

e− φ(x )
D k(x )dx+ 1

|∂�|
∫
∂�

e− φ(x )
D d S

for n = 2,

1
|∂�|

∫
∂�

e− φ(x )
D d S

1
4Dη

∫
�

e− φ(x )
D k(x )dx+ 1

|∂�|
∫
∂�

e− φ(x )
D d S

for n = 3.

(78)

The probability PN can be further estimated by using the Laplace method when
D � 1 or when the exponential term is small, which requires that B Diam � D,
where Diam is the diameter of the cell.

When the potential φ is an increasing function of the distance from the
nucleus N , the minimum of the phase is achieved on the boundary of the nucleus.
For simplicity, we assume that the geometry of the nucleus is a ball of radius δ.
When the diffusion constant is small compared to the potential D � φ, we consider
two extreme cases: first φ achieves its minimum uniformly on the nucleus surface
and second, it is achieved at a finite number of isolated points.

In the first case, using the explicit expression of the field φ = Br , we get on
the surface of the nucleus

1

|∂�|
∫

∂�

e− φ(x )
D ≈ e− δB

D . (79)

By successive integrations by parts, if we denote

k̃(r ) =
∫

r=δ

k(r, θ )dθ, (80)

then we obtain
∫

�

e− φ(x )
D k(x )dx =

∫ R

δ

e− Br
D rn−1dr

∫
r=δ

k(r, θ )dθ
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≈
{

D

B
δn−1k̃(δ) +

(
D

B

)2 (
δn−1k̃ ′(δ) + (n − 1)δn−2k̃(δ)

)

+
(

D

B

)3 (
δn−1k̃ ′′(δ) + 2(n − 1)δn−2k̃ ′(δ) + (n − 1)(n − 2)δn−3k̃(δ)

)}
e− δB

D .

When k is locally constant in a neighborhood of the nucleus r = δ, we obtain the
following expression

∫
�

e− φ(x )
D k(x )dx =

(
D

B
δn−1 +

(
D

B

)2

(n − 1)δn−2

+
(

D

B

)3

(n − 1)(n − 2)δn−3

)
kSne− δB

D , (81)

where

Sn =
{

2π for n = 2,

4π for n = 3.
(82)

Finally, under the previous approximations, formula (78) reduces to

PN ≈

⎧⎪⎨
⎪⎩

1
2 ln 1

η

D

(
D
B δ+2( D

B )2
)

k+1
for n = 2,

1
π

Dη

(
D
B δ2+2( D

B )2
δ+2( D

B )3
)

k+1
for n = 3.

(83)

In first approximation, when the diffusion is small, it is interesting to note that the
probability PN does not depend on the diffusion coefficient D but rather on the
mean velocity along microtubules.

For a general field, achieving a global minimum inside the domain � at
isolated points, by using the Laplace method in formula (78), we can approximate
the expression for the probability PN by

∫
∂�

e− φ(x )
D d S =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e− φm
D

M∑
k=1

√
2Dπ

det Hess ′(φ)k
for n = 2

e− φm
D

M∑
k=1

2Dπ√
det Hess ′(φ)k

for n = 3,

(84)
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where φm is the minimum of φ achieved on the boundary of the nucleus and
Hess ′(φ)k denoted the Hessian of the restriction of φ to the boundary. Similarly,

∫
�

e− φ(x )
D k(x )dx =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e− φN
D

N∑
k=1

k(x k)
2Dπ√

det Hess(φ)k

for n = 2,

e− φN
D

N∑
k=1

k(x k)
(2Dπ )3/2√

det Hess(φ)k

for n = 3,

(85)

where φN is the minimum φ achieved inside the cell at the interior points
x1, . . . , xN . When the minimum of φ is achieved on the surface of the nucleus,
φN = φm and the right-hand side of expression (85) is multiplied by a factor 1/2.
We leave to the reader to gather the pieces to obtain the fat expression for the
probability PN .

When the condition B Diam � D is satisfied, we can use a Taylor expansion
of the exponential term to get

1

|∂�|
∫

∂�

e− φ(x )
D d S = 1 − 〈φ〉∂�

D
+ o

(
φ

D

)2

(86)

where 〈〉∂� denotes the average over the boundary. For a radial potential and a
round cell of radius R〉〉δ,

< φ >∂�≈ B R. (87)

Thus,

PN ≈

⎧⎪⎪⎨
⎪⎪⎩

1− B R
D

ln 1
η

Dπ (
∫
�

k(x )dx−∫
�

k(x )φ(x)dx)+1− B R
D

for n = 2,

1− B R
D

1
4Dη (

∫
�

k(x )dx−∫
�

k(x )φ(x)dx)+1− B R
D

for n = 3.

(88)

4.2. Mean Conditional Reaching Time to the Nucleus

The mean reaching time τN can be computed following the steps of the no drift
case (see paragraph 3.3). To estimate the reaching time, defined by expression (29),
we use the asymptotic approximation q(x ) = Tηe−φ(x )/D of Eq. (25), whereas p̃
is given by expression (70).

The first step consists of obtaining an expression of Tη as a function of Pη:
for this, we use relation (75) where pi is replaced by Pηe−φ(x )/D , we then obtain
the integral equation

D

∫
∂�a

G Q g(S)e− φ(x )
D d S + 1

|∂�|
∫

∂�

Tηe− φ(x )
D ds
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=
∫

�

G Q(x )
(

e− φ(x )
D (k(x )Tη − Pη)

)
dx

−
∫

�

∇G Q(x ).∇φ(x )Tηe− φ(x )
D dx (89)

and the flux condition (obtained by integrating Eq. (25)) imposes that

D

∫
∂ Na

g(S)d S ≈ −Pη

∫
�

e− φ(x )
D dx + Tη

∫
�

k(x )e− φ(x )
D dx . (90)

Using the flux expression (76), we obtain an expression for the constant Tη, in
dimension 2:

Tη ≈ Pη

ln 1
η

Dπ

∫
�

e− φ(x )
D dx

ln 1
η

Dπ

∫
�

e− φ(x )
D k(x )dx +

∫
∂�

e− φ(x )
D

d S

|∂�| +
∫

�

∇G Q (x ).∇φ(x )e− φ(x )
D dx +

∫
�

e− φ(x )
D k(x )dx

and in dimension 3,

Tη ≈
Pη

1

4Dη

∫
�

e− φ(x )
D dx

1

4Dη

∫
�

e− φ(x )
D k(x )dx +

∫
∂�

e− φ(x )
D d S

|∂�| +
∫

�

∇G Q (x ).∇φ(x )e− φ(x )
D dx +

∫
�

e− φ(x )
D k(x )dx

.

Using the definition (29) of the time τN , we get that

τN ≈ Pη

PN

(∫
�

e− φ(x )
D dx − Tη

Pη

∫
�

e− φ(x )
D k(x )dx

)
. (91)

In the approximation where the killing rate is small (integrals in k are negligible
compared to one), we obtain by using the asymptotic expressions (78) for the
probability PN , the following asymptotic formulas for the reaching time:

τN ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ln 1
η

Dπ

∫
�

e− φ(x )
D dx

ln 1
η

Dπ

∫
�

e− φ(x )
D k(x )dx+ 1

|∂�|
∫
∂�

e− φ(x )
D d S

for n = 2,

1
4Dη

∫
�

e− φ(x )
D dx

1
4Dη

∫
�

e− φ(x )
D k(x )dx+ 1

|∂�|
∫
∂�

e− φ(x )
D d S

for n = 3.

(92)

In addition, when the diffusion coefficient D is small and the potential φ achieves
its minimum uniformly on the boundary, by using Laplace’s method, when the
killing rate k is locally constant near the boundary, we obtain

τN ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 ln 1
η

D

(
D
B δ+2( D

B )2
)

k
2 ln 1

η

D

(
D
B δ+2( D

B )2
)
+1

for n = 2,

π
ηD

(
D
B δ2+2( D

B )2
δ+2( D

B )3
)

π
Dη

(
D
B δ2+2( D

B )2
δ+2( D

B )3
)

k+1
for n = 3.

(93)
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It is interesting to note that when the diffusion constant is small, the mean reaching
time depends mainly on the time spent in a small region around the nucleus. When
Bδ
D � 1, other limit formulas can be obtained, such as

τN ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ln 1
η

Dπ (|�|−∫
�

φ(x )
D dx)

ln 1
η

Dπ (
∫
�

k(x )dx−∫
�

φ(x )
D k(x )dx)+1− 1

|∂�|
∫
∂�

φ(x )
D d S

for n = 2,

1
4Dη (|�|−∫

�

φ(x )
D dx)

1
4Dη (

∫
�

k(x )dx−∫
�

φ(x )
D k(x )dx)+1− 1

|∂�|
∫
∂�

φ(x )
D d S

for n = 3.

(94)

In the case of n well separated small holes, formula (83) and (93) are modified
as we did in paragraph 3.3.1 (replacing 1

4Dη
by 1

(4nDη) in dimension 3 and ln 1
η

by

( 1
n ) ln ( 1

η
) by in dimension 2).

We now propose to use these formula for numerical evaluations. We consider
data coming from the Associated Adeno Virus (AAV), where the diffusion constant
is D ≈ 1.3 µm2/s and the mean drift is in a range 1.8–3.7 µm/s. (17) Because the
effective drift of a virus toward the nucleus is about 5 to 10 percent of the mean
drift, we chose, close to the nucleus, a mean effective drift value of B = 2.5/20 =
0.12 µm/s. (23) We choose also a killing k = 1/3600 s−1. The cell characteristics
are identical to the case of a plasmid. We obtain that the reaching probability is
given by

PN = 0.98 for n = 2 (95)

PN = 0.70 for n = 3, (96)

while the mean reaching time is given by

τN = 66 s for n = 2 (97)

τN = 1056 s for n = 3. (98)

The probability to reach the nucleus is higher for viruses compared to plasmids,
which is a consequence here of the drift effect. However, the reaching time in
dimension two and three is very different for both plasmids and viruses. For
viruses, the difference between dimensions 2 and 3 is observed mainly for the
reaching time τN , which is multiplied by a factor 16.

5. DISCUSSION AND BIOLOGICAL IMPLICATIONS

We provided here a general theoretical framework to study viral and DNA
trafficking in a biological cell. While the viral particle movement is approximated
by a Markovian stochastic equation, the degradation activity is modeled by a
steady state killing rate. Under the assumption that the killing activity is small
compared to the diffusion rate, we provided here explicit asymptotic formula of
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the probability and the mean time a virus or a plasmid DNA reaches a small
nuclear pore.

Various assumptions need to be discussed: first, contrary to what we assumed,
the location of the centrosome, where microtubules converge, does not exactly co-
incide with the nucleus. Thus a virus can reach a nuclear pore only if it detaches
from the microtubules. However, the process by which trafficking molecules lo-
cated in a neighborhood of the centrosome are detached from microtubules and
move near the nucleus, is not clear. At this stage of the model, since we have not
made any distinctions between the centrosome and the nucleus, we neglected the
transport from the centrosome to the nucleus. However, to interpret our numerical
result about the time a virus hits a nuclear pore, we observe that formula 93 ac-
counts mainly for the time spent close to the nucleus surface, inside a boundary
layer of size D

B . This boundary layer is generated by the competition between
the diffusion and the drift. Second, the diffusion process is modeled here in the
continuum limit: it might also approximate a discreet diffusion process along mi-
crotubules, where a trafficking molecule may jump randomly from one to another
microtubule at an intersection. Third, the killing field which represents the effect
of enzymatic activity may also represent the direct ubiquitination process leading
to the proteasome degradation. For a virus, the degradation may happen only in a
neighborhood of the nucleus, where it is partially uncoated, while the degradation
may be homogeneously active in all parts of the cell for a naked DNA.

When many viruses are involved, the probability PN represents the fraction
of viruses reaching the nucleus between the initial time and a large time (infinity),
while τN is the mean time it takes for the viral fraction to reach the nucleus. The
computation of the mean time the first virus reaches the nucleus is more involved
and is postponed to a future article.

Finally, the present asymptotic computations can be used to estimate the
effect of disrupting the microtubule network on the mean reaching time. By using
a microtubule disrupting drugs, the delivery process will be affected and it can
be modeled here by reducing the value of the drift B. As a consequence, the
probability to reach a nuclear pore (given by formula (78)) is reduced, leading
the way to a killing activity that might be enough to degrade viral DNA. In that
case, the reaching time changes according to formula (93). The numerical results
presented here suggest that viruses are more efficient, than plasmids in reaching
the nucleus in agreement with experimental results. According to our analysis,
successful viruses spent most of their time in a neighborhood of the nucleus, while
plasmids keep exploring the cell volume.
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